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Abstract-The Klein 4-group,denoted by V4

is an abelian group of order 4. It has ele-
ments V4 = {0, a, b, c}, with a + a = b + b =
c + c = 0 and a + b = c, b + c = a, c + a =
b. A graph G(V (G), E(G) is said to be neigh-
bourhood V4−magic if there exists a label-
ing f : V (G) → V4\{0} such that the in-
duced mapping N+

f : V (G) → V4 defined by

N+
f (v) =

∑
u∈N(v) f(u) is a constant map. If

this constant is p(p 6= 0), we say that f is
a p − neighbourhood V4−magic labeling of
G and G a p − neighbourhood V4−magic
graph. If this constant is zero, we say that f
is a 0 − neighghbourhood V4 -magic labeling
of G and G a 0 − neighbourhood V4−magic
graph. In this paper, we discuss neighbourhood
V4−magic labeling of some splitting graphs.
Key words: Klein-4-group,
Splitting graphs, a -neighbourhood and
0 -neighbourhood V4 -magic graphs.
AMS classification: 05C78, 05C25.

1 Introduction

Throughout this paper we consider sim-
ple, finite, connected and undirected graphs. For
standard terminology and notation we follow [1]
and [6]. For a detailed survey on graph labeling
we refer [2]. The V4 -magic graphs were intro-

duced by S. M. Lee et al. in 2002 [3]. We say
that, a graph G = (V (G), E(G)), with vertex
set V (G) and edge set E(G) is Neighbourhood
V4 -magic if there exists a labeling f : V (G) →
V4\{0} such that the induced mapping N+

f :

V (G)→ V4 defined by N+
f (v) =

∑
u∈N(v) f(u)

is a constant map. If this constant is p, where p
is any non zero element in V4, then we say that
f is a p−neighbourhood V4 -magic labeling of
G and G is said to be a p − neighbourhood
V4 -magic graph. If this constant is 0, then
we say that f is a 0 − neighbourhood V4 -
magic labeling of G and G is said to be a
0−neighbourhood V4 -magic graph. We divide
the class of neighbourhood V4 -magic graphs
into the following three categories:

(i) Ωa := the class of all a − neighbourhood
V4 -magic graphs,

(ii) Ω0 := the class of all 0 − neighbourhood
V4 -magic graphs, and

(iii) Ωa,0 := Ωa ∩ Ω0.

The Splitting graph S(G) of a connected
graph G is obtained by adding to each vertex u
in G, a new vertex u′ such that u′ is adjacent
to the neighbours of u in G. The Bistar Bm,n is
the graph obtained by joining the central vertex
K1,m and K1,n by an edge[2].The friendship
graph or the Dutch windmill graph, denoted by

Fm ( or D
(m)
3 ) is obtained by taking m copies
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of C3 with one vertex in common[5]. The Book
graph Bn is the graph Sn�P2 , where Sn is
the star with n+ 1 vertices and P2 is the path
on 2 vertices[7]. A quadrilateral snake QSn

is obtained from a path v1v2v3 . . . vn by join-
ing each pair vi, vi+1 to the new vertices ui, wi

respectively and then joining ui and wi by
an edge[4]. This paper investigate neighbour-
hood V4−magic labeling of splitting graphs of
Cn, Pn, Bm,n,K1,n,Km,n, Fm, QSn and Bn.

2 Main Results

Theorem 2.1. The graph S(Cn) ∈ Ωa if and
only if n ≡ 0(mod 4).

Proof. Consider the splitting graph S(Cn),
let u1, u2, u3, . . . , un be the vertices of Cn

and let u′
1, u

′
2, u

′
3, . . . , u

′
n be the new vertices in

S(Cn). Assume that n 6≡ 0(mod 4). Then ei-
ther n ≡ 1(mod 4) or n ≡ 2(mod 4) or
n ≡ 3(mod 4). We show that in each these cases
S(Cn) /∈ Ωa.

Case 1: n ≡ 1(mod 4)

In this case n = 4k + 1 for some k ∈ N. Then
V (S(Cn)) = {ui, u

′
i : 1 ≤ i ≤ 4k + 1}.

If possible let S(Cn) ∈ Ωa with a labeling
f. Then N+

f (u′
2) = a implies that f(u1) +

f(u3) = a, which implies that either f(u1) = b
or f(u1) = c. Without loss of generality as-
sume that f(u1) = b. Then f(u3) = c, f(u5) =
b, f(u7) = c, f(u9) = b, f(u11) = c, f(u13) = b.
Proceeding like this, we get f(u4k+1) = b. Also
N+

f (u′
1) = a and f(u4k+1) = b implies that

f(u2) = c, f(u4) = b, f(u6) = c, f(u8) =
b, f(u10) = c, f(u12) = b. Proceeding like this
we get f(u4k) = b. Therefore, N+

f (u′
4k+1) =

b+b = 0, a contradiction. Thus if n ≡ 1(mod 4),
we have S(Cn) /∈ Ωa.

Case 2: n ≡ 2(mod 4)

In this case n = 4k + 2 for some k ∈ N. Then
V (S(Cn)) = {ui, u

′
i : 1 ≤ i ≤ 4k + 2}.

If possible let S(Cn) ∈ Ωa with a labeling
f. Then N+

f (u′
2) = a implies that f(u1) +

f(u3) = a, which implies that either f(u1) = b
or f(u1) = c. Without loss of generality as-

sume that f(u1) = b. Then f(u3) = c, f(u5) =
b, f(u7) = c, f(u9) = b, f(u11) = c, f(u13) = b.
Proceeding like this, we get f(u4k+1) = b. Now
N+

f (u′
4k+2) = f(u1) + f(u4k+1) = b + b = 0, a

contradiction. Thus if n ≡ 2(mod 4), we have
S(Cn) /∈ Ωa.

Case 3: n ≡ 3(mod 4)

In this case n = 4k + 3 for some k ∈ N. Then
V (S(Cn)) = {ui, u

′
i : 1 ≤ i ≤ 4k + 3}.

If possible let S(Cn) ∈ Ωa with a labeling
f. Then N+

f (u′
2) = a implies that f(u1) +

f(u3) = a, which implies that either f(u1) = b
or f(u1) = c. Without loss of generality as-
sume that f(u1) = b. Then f(u3) = c, f(u5) =
b, f(u7) = c, f(u9) = b, f(u11) = c, f(u13) = b.
Proceeding like this, we get f(u4k+3) = c. Now
N+

f (u′
1) = a implies that f(u2) = b, f(u4) =

c, f(u6) = b, f(u8) = c, f(u10) = b, f(u12) = c.
Proceeding like this, we get f(u4k+2) = b.
Therefore N+

f (u′
4k+3) = f(u1) +f(u4k+2) = b+

b = 0, a contradiction.Thus if n ≡ 3(mod 4), we
also have S(Cn) /∈ Ωa. Hence if n 6≡ 0(mod 4),
S(Cn) /∈ Ωa. Conversely if n ≡ 0(mod 4),

Define f : V (S(Cn))→ V4\{0} as:

f(ui) =

{
b if i ≡ 1, 2(mod 4)

c if i ≡ 0, 3(mod 4)

f(u′
i) = a for 1 ≤ i ≤ n.

Then, f is a a − neighbourhood V4−magic
labeling for S(Cn). This completes the proof of
the theorem.

Theorem 2.2. S(Cn) ∈ Ω0 for all n ≥ 3.

Proof. The degree of each vertex in S(Cn) is ei-
ther 2 or 4. By labeling all the vertices by a, we
get N+

f (u) = 0 for all u ∈ V (S(Cn)).

Corollary 2.3. S(Cn) ∈ Ωa,0 if and only if
n ≡ 0(mod 4).

Proof. Proof is obviously follows from theorem
2.1 and theorem 2.2.

Theorem 2.4. The graph S(Pn) 6∈ Ω0 for all
n ≥ 2.

International Journal of Research in Advent Technology, Vol.7, No.1, January 2019
                                                  E-ISSN: 2321-9637
                                       Available online at www.ijrat.org

531



Proof. Proof is obvious due to the presence of
pendant vertices in S(Pn).

Theorem 2.5. S(Pn) 6∈ Ωa for n ≥ 2.

Proof. Consider the splitting graph S(Pn),
let u1, u2, u3, . . . , un be the vertices of Pn

and let u′
1, u

′
2, u

′
3, . . . , u

′
n be the new vertices in

S(Pn). Suppose that S(Pn) ∈ Ωa for some
n ≥ 2 with a labeling f. Then N+

f (u′
1) = a

implies that f(u2) = a. Also N+
f (u′

1) = a
gives f(u2) + f(u′

2) = a, which implies that
f(u′

2) = 0, a contradiction. This completes the
proof of the theorem.

Corollary 2.6. S(Pn) 6∈ Ωa,0 for n ≥ 2.

Proof. Proof directly follows from theorems 2.4
and 2.5.

Theorem 2.7. S(Bm,n) 6∈ Ωa for all m > 1
and n > 1.

Proof. Consider the bistar Bm,n with vertex set
V = {u, v, ui, vj : 1 ≤ i ≤ m and 1 ≤ j ≤ n}
where ui(1 ≤ i ≤ m) and vj(1 ≤ j ≤ n)
are pendant vertices adjacent to u and v re-
spectively. Let V ′ = {u′, v′, u′

i, v
′
j : 1 ≤ i ≤

m and 1 ≤ j ≤ n} be the corresponding set of
new vertices in S(Bm,n). Then V (S(Bm,n)) =
V ∪ V ′. Suppose that S(Bm,n) ∈ Ωa for some
m > 1 and n > 1 with a labeling f. Then
N+

f (v′1) = a implies that f(v) = a. Now

N+
f (v1) = a gives f(v) + f(v′) = a, which

implies that f(v′) = 0, a contradiction. This
completes the proof of the theorem.

Theorem 2.8. S(Bm,n) 6∈ Ω0 for all m > 1
and n > 1.

Proof. Proof is obvious, since S(Bm,n) has pen-
dant vertices.

Corollary 2.9. S(Bm,n) 6∈ Ωa,0 for all m > 1
and n > 1.

Proof. Proof directly follows from theorems 2.7
and 2.8.

Theorem 2.10. S(K1,n) 6∈ Ωa for all n ∈ N.

Proof. Consider K1,n with vertex set V =
{u, ui : 1 ≤ i ≤ n} and let V ′ = {u′, u′

i :
1 ≤ i ≤ n} be the corresponding set of new
vertices in S(K1,n). Assume that S(K1,n) ∈
Ωa for some n ∈ N with a labeling f. Now
N+

f (u′
1) = a gives f(u) = a. Also N+

f (u1) = a
implies that f(u) + f(u′) = a, which implies
that f(u′) = 0, a contradiction. Hence the
proof.

Theorem 2.11. S(K1,n) 6∈ Ω0 for all n ∈ N.

Proof. Proof is obvious due to the presence of
pendant vertices in S(K1,n).

Corollary 2.12. S(K1,n) 6∈ Ωa,0 for all n ∈
N.

Proof. Proof directly follows from theorems 2.10
and 2.11.

Theorem 2.13. S(Km,n) ∈ Ωa for all m > 1
and n > 1.

Proof. Consider Km,n with m > 1 and n >
1. Let X = {u1, u2, u3, . . . , um} and Y =
{v1, v2, v3, . . . , vn} be the bipartition of Km,n.
Also let X ′ = {u′

1, u
′
2, u

′
3, . . . , u

′
m} and Y ′ =

{v′1, v′2, v′3, . . . , v′n} be the corresponding sets of
new vertices in S(Km,n). Then V (S(Km,n)) =
X∪Y ∪X ′∪Y ′. We consider the following cases:

Case 1: Both m and n are even.

Define f : V (S(Km,n))→ V4\{0} as:

f(ui) =


b if i = 1

c if i = 2

a if i > 2

f(vj) =


b if j = 1

c if j = 2

a if j > 2

f(u′
i) = a for 1 ≤ i ≤ m

f(v′j) = a for 1 ≤ j ≤ n

International Journal of Research in Advent Technology, Vol.7, No.1, January 2019
                                                  E-ISSN: 2321-9637
                                       Available online at www.ijrat.org

532



Case 2: m is even and n is odd.

f(ui) =


b if i = 1

c if i = 2

a if i > 2

f(v′j) =


b if j = 1

c if j = 2

a if j > 2

f(u′
i) = a for 1 ≤ i ≤ m

f(vj) = a for 1 ≤ j ≤ n

Case 3: m is odd and n is even.

f(u′
i) =


b if i = 1

c if i = 2

a if i > 2

f(vj) =


b if j = 1

c if j = 2

a if j > 2

f(ui) = a for 1 ≤ i ≤ m

f(v′j) = a for 1 ≤ j ≤ n

Case 4: Both m and n are odd.

f(u′
i) =


b if i = 1

c if i = 2

a if i > 2

f(v′j) =


b if j = 1

c if j = 2

a if j > 2

f(ui) = a for 1 ≤ i ≤ m

f(vj) = a for 1 ≤ j ≤ n

In each of the above cases, f is a a -
neighbourhood V4 -magic labeng of S(Km,n).
This completes the proof of the theorem.

Theorem 2.14. S(Km,n) ∈ Ω0 for all m > 1
and n > 1.

Proof. Consider Km,n with m > 1 and n >
1. Let X = {u1, u2, u3, . . . , um} and Y =
{v1, v2, v3, . . . , vn} be the bipartition of Km,n.
Also let X ′ = {u′

1, u
′
2, u

′
3, . . . , u

′
m} and Y ′ =

{v′1, v′2, v′3, . . . , v′n} be the corresponding sets of
new vertices in S(Km,n). Then V (S(Km,n)) =
X∪Y ∪X ′∪Y ′. We consider the following cases:

Case 1: Both m and n are even.

Define f : V (S(Km,n))→ V4\{0} as:

f(ui) = f(u′
i) = a if i = 1, 2, 3, . . . ,m

f(vj) = f(v′j) = a if j = 1, 2, 3, . . . , n

Case 2: m is even and n is odd.

f(vj) =


b if j = 1

c if j = 2

a if j > 2

f(v′j) =


b if j = 1

c if j = 2

a if j > 2

f(ui) = a for 1 ≤ i ≤ m

f(u′
i) = a for 1 ≤ i ≤ m

Case 3: m is odd and n is even.

f(ui) =


b if i = 1

c if i = 2

a if i > 2

f(u′
i) =


b if i = 1

c if i = 2

a if i > 2

f(vj) = a for 1 ≤ j ≤ n

f(v′j) = a for 1 ≤ j ≤ n

Case 4: Both m and n are odd.

f(ui) =


b if i = 1

c if i = 2

a if i > 2
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f(u′
i) =


b if i = 1

c if i = 2

a if i > 2

f(vj) =


b if j = 1

c if j = 2

a if j > 2

f(v′j) =


b if j = 1

c if j = 2

a if j > 2

In each of the above cases, f is a 0 -
neighbourhood V4 -magic labeng of S(Km,n).
This completes the proof of the theorem.

Corollary 2.15. S(Km,n) ∈ Ωa,0 for all m >
1 and n > 1.

Proof. Proof directly follows from theorems 2.13
and 2.14.

Theorem 2.16. S(Fm) ∈ Ω0 for all m ∈ N.

Proof. If we label all the vertices of S(Fm) by
a, we get S(Fm) ∈ Ω0.

Theorem 2.17. S(Fm) 6∈ Ωa for all m ∈ N.

Proof. Consider the friendship graph Fm. Let
the vertices of ith copy of C3 in Fm be w , ui

and vi where w is the common vertex of the
triangles and let {w′, u′

i, v
′
i : 1 ≤ i ≤ m} be the

corresponding set of vertices in S(Fm). Assume
that S(Fm) ∈ Ωa for some m ∈ N with a la-
beling f. Since N+

f (u′
1) = a, either f(w) = b

or f(w) = c. Without loss of generality assume
that f(w) = b. If f(w) = b, f(ui) = f(vi) = c
for all 1 ≤ i ≤ m. Therefore, N+

f (w′) = 2mc =
0, a contradiction. Hence S(Fm) 6∈ Ωa for all
m ∈ N.

Corollary 2.18. S(Fm) 6∈ Ωa,0 for all m ∈ N.

Proof. Proof directly follows from theorems 2.16
and 2.17.

Theorem 2.19. S(QSn) ∈ Ω0 for all n ∈ N.

Proof. Label all the vertices of S(QSn) by
a, we get S(QSn) ∈ Ω0.

Theorem 2.20. S(QSn) 6∈ Ωa for all n > 2.

Proof. Let QSn be the quadrilateral snake ob-
tained from the path v1v2v3 . . . vn by joining
each pair vi, vi+1 to the new vertices ui, wi

respectively and then joining ui and wi by
an edge. Now consider S(QSn). Let v′i, u

′
i, w

′
i

be the new vertices corresponding to vi, ui, wi.
Suppose S(QSn) ∈ Ωa for some n > 2
with a labeling f. Then, N+

f (u′
1) = a gives

f(v1) + f(w1) = a. Also N+
f (w′

2) = a implies

that f(u2) + f(v3) = a, Therefore, N+
f (v′2) =

f(v1) + f(w1) + f(u2) + f(v3) = 0, a contradic-
tion. Hence, S(QSn) 6∈ Ωa for all n > 2.

Corollary 2.21. S(QSn) 6∈ Ωa,0 for all n > 2.

Proof. Proof directly follows from theorems 2.19
and 2.20.

Theorem 2.22. S(Bn) ∈ Ωa if and only if n
is odd.

Proof.
Consider Bn with vertex set {u, v, ui, vi : 1 ≤
i ≤ n} and edge set {uv, uui, vvi, uivi : 1 ≤
i ≤ n}. Let {u′, v′, u′

i, v
′
i : 1 ≤ i ≤ n} be

the set of new vertices in S(Bn). Assume that
S(Bn) ∈ Ωa for some n ∈ N with a label-
ing f. Since N+

f (u′
1) = a, we have f(u) = b

or f(u) = c. Without loss of generality we as-
sume that f(u) = b. Then f(vi) = c for all
i = 1, 2, 3, . . . , n. Now N+

f (v′) = a implies that

f(u) +
∑n

i=1 f(vi) = b + nc = a. Hence n is
odd. Conversely assume that n is odd. Define
a labeling f : V (S(Bn))→ V4\{0} as:

f(u) = f(ui) = b if i = 1, 2, 3, . . . , n

f(v) = f(vi) = c if i = 1, 2, 3, . . . , n

f(u′) = fu′
i) = a if i = 1, 2, 3, . . . , n

f(v) = f(v′i) = a if i = 1, 2, 3, . . . , n

Then, f is a a− neighbourhood V4 -magic la-
beling of S(Bn). This completes the proof.
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Theorem 2.23. S(Bn) ∈ Ω0 if and only if n
is odd.

Proof. Consider the book graph Bn with ver-
tex set {u, v, ui, vi : 1 ≤ i ≤ n} and edge
set {uv, uui, vvi, uivi : 1 ≤ i ≤ n}. Let
{u′, v′, u′

i, v
′
i : 1 ≤ i ≤ n} be the set of new

vertices in S(Bn). Assume that S(Bn) ∈ Ω0

for some n ∈ N with a labeling f. Since
N+

f (u′
1) = 0, we should have f(u) = f(v1) = a

or f(u) = f(v1) = b or f(u) = f(v1) =
c. Without loss of generality we assume that
f(u) = f(v1) = a. Then f(vi) = a for all
i = 1, 2, 3, . . . , n. Now N+

f (v′) = 0 implies that

f(u)+
∑n

i=1 f(vi) = a+na = 0. Hence n is odd.
Conversely assume that n is odd. We define
f : V (S(Bn)) → V4\{0} as: f(w) = a for all
w ∈ V (S(Bn)). Then, f is a 0− neighbourhood
V4 -magic labeling of S(Bn).

Corollary 2.24. S(Bn) ∈ Ωa,0 if and only if
n is odd.

Proof. Proof directly follows from theorems 2.22
and 2.23.

This research paper investigates neighbour-
hood V4−magic labeling of splitting graphs of
special graphs like Cn, Pn, Bm,n, K1,n, Km,n,
Fm, QSn and Bn respectively. The splitting
graph we considered was 2-level splits. The
m− level splitting graphs (m > 2) yet to be con-
sidered. Scope of this research is the investi-
gation of neighbourhood V4 -magic labeling of
m− level splitting graphs for m > 2.

References

[1] Chartrand.G,Zhang.P, Introduction to
Graph Theory, McGraw-Hill, 2005.

[2] Joseph A.Gallian,A dynamic survey of
graph labeling, The Electronics Journal of
Combinatorics,Twenty-first edition, Decem-
ber 21, 2018.

[3] Lee SM, Saba F, Salehi E, Sun H. On the
V4− magic graphs, Congressus Numeran-
tium,2002.

[4] N. B. Rathod and K. K. Kanani, V4 -Cordial
Labeling of Quadrilateral Snakes, Interna-
tional Journal of emerging Technologies and
applications in Engineering, Technology and
Sciences,Jan 2016.

[5] P.T Vandana, V anil Kumar: V4 -Magic La-
belings of Wheel related graphs, British
journal of Mathematics and Computer
science,8(3),189-219,(2015).

[6] R. Balakrishnan and K. Ranganathan, A
Textbook of Graph theory, Springer, 2012.

[7] R.Sweetly and J.Paulraj Joseph,Some spe-
cial V4−magic graphs, journal of infor-
matics and Mathematical sciences,2,141-
148,(2010).

International Journal of Research in Advent Technology, Vol.7, No.1, January 2019
                                                  E-ISSN: 2321-9637
                                       Available online at www.ijrat.org

535


