International Journal of Research in Advent Technology, Vol.7, No.1, January 2019 E-ISSN: 2321-9637 Available online at www.ijrat.org

Neighbourhood V_4 -Magic Labeling of Some Splitting Graphs

Vineesh K.P.¹ and Anil Kumar V.²

¹Department of Mathematics,Sree Narayana Guru College, Chelannur, Kozhikode, Kerala,India 673 616

²Department of Mathematics, University of Calicut, Malappuram, Kerala, India 673 635, email:kpvineeshmaths@gmail.com¹, anil@uoc.ac.in²

Abstract-The Klein 4-group, denoted by V_4 is an abelian group of order 4. It has elements $V_4 = \{0, a, b, c\}$, with a + a = b + b =c + c = 0 and a + b = c, b + c = a, c + a =b. A graph G(V(G), E(G)) is said to be neighbourhood V_4 – magic if there exists a labeling $f : V(G) \to V_4 \setminus \{0\}$ such that the induced mapping N_f^+ : $V(G) \to V_4$ defined by $N_f^+(v) = \sum_{u \in N(v)} f(u)$ is a constant map. If this constant is $p(p \neq 0)$, we say that f is a p - neighbourhood $V_4 - magic$ labeling of G and G a p – neighbourhood V_4 – magic graph. If this constant is zero, we say that fis a 0 - neighphourhood V₄-magic labeling of G and G a $0 - neighbourhood V_4 - magic$ graph. In this paper, we discuss neighbourhood V_4 – magic labeling of some splitting graphs. Key words: Klein-4-group, Splitting graphs, *a*-neighbourhood and 0-neighbourhood V_4 -magic graphs. AMS classification: 05C78, 05C25.

1 Introduction

Throughout this paper we consider simple, finite, connected and undirected graphs. For standard terminology and notation we follow [1] and [6]. For a detailed survey on graph labeling we refer [2]. The V_4 -magic graphs were intro-

duced by S. M. Lee et al. in 2002 [3]. We say that, a graph G = (V(G), E(G)), with vertex set V(G) and edge set E(G) is Neighbourhood V_4 -magic if there exists a labeling $f: V(G) \to$ $V_4 \setminus \{0\}$ such that the induced mapping N_f^+ : $V(G) \to V_4$ defined by $N_f^+(v) = \sum_{u \in N(v)} f(u)$ is a constant map. If this constant is p, where pis any non zero element in V_4 , then we say that f is a $p-neighbourhood V_4$ -magic labeling of G and G is said to be a p - neighbourhood V_4 -magic graph. If this constant is 0, then we say that f is a $0 - neighbourhood V_4$ magic labeling of G and G is said to be a $0 - neighbourhood V_4$ -magic graph. We divide the class of neighbourhood V_4 -magic graphs into the following three categories:

- (i) $\Omega_a :=$ the class of all a neighbourhood V_4 -magic graphs,
- (ii) $\Omega_0 :=$ the class of all 0 neighbourhood V_4 -magic graphs, and
- (iii) $\Omega_{a,0} := \Omega_a \cap \Omega_0.$

The Splitting graph S(G) of a connected graph G is obtained by adding to each vertex uin G, a new vertex u' such that u' is adjacent to the neighbours of u in G. The Bistar $B_{m,n}$ is the graph obtained by joining the central vertex $K_{1,m}$ and $K_{1,n}$ by an edge[2]. The friendship graph or the Dutch windmill graph, denoted by F_m (or $D_3^{(m)}$) is obtained by taking m copies Available online at www.ijrat.org

of C_3 with one vertex in common[5]. The Book graph B_n is the graph $S_n \Box P_2$, where S_n is the star with n+1 vertices and P_2 is the path on 2 vertices[7]. A quadrilateral snake QS_n is obtained from a path $v_1v_2v_3...v_n$ by joining each pair v_i, v_{i+1} to the new vertices u_i, w_i respectively and then joining u_i and w_i by an edge[4]. This paper investigate neighbourhood V_4 - magic labeling of splitting graphs of $C_n, P_n, B_{m,n}, K_{1,n}, K_{m,n}, F_m, QS_n$ and B_n .

2 Main Results

Theorem 2.1. The graph $S(C_n) \in \Omega_a$ if and only if $n \equiv 0 \pmod{4}$.

Proof. Consider the splitting graph $S(C_n)$, let $u_1, u_2, u_3, \ldots, u_n$ be the vertices of C_n and let $u'_1, u'_2, u'_3, \ldots, u'_n$ be the new vertices in $S(C_n)$. Assume that $n \not\equiv 0 \pmod{4}$. Then either $n \equiv 1 \pmod{4}$ or $n \equiv 2 \pmod{4}$ or $n \equiv 3 \pmod{4}$. We show that in each these cases $S(C_n) \notin \Omega_a$.

Case 1: $n \equiv 1 \pmod{4}$

In this case n = 4k + 1 for some $k \in \mathbb{N}$. Then $V(S(C_n)) = \{u_i, u'_i : 1 \leq i \leq 4k + 1\}$. If possible let $S(C_n) \in \Omega_a$ with a labeling f. Then $N_f^+(u'_2) = a$ implies that $f(u_1) + f(u_3) = a$, which implies that either $f(u_1) = b$ or $f(u_1) = c$. Without loss of generality assume that $f(u_1) = b$. Then $f(u_3) = c, f(u_5) = b, f(u_7) = c, f(u_9) = b, f(u_{11}) = c, f(u_{13}) = b$. Proceeding like this, we get $f(u_{4k+1}) = b$. Also $N_f^+(u'_1) = a$ and $f(u_{4k+1}) = b$ implies that $f(u_2) = c, f(u_4) = b, f(u_6) = c, f(u_8) = b, f(u_{10}) = c, f(u_{12}) = b$. Proceeding like this we get $f(u_{4k}) = b$. Therefore, $N_f^+(u'_{4k+1}) = b + b = 0$, a contradiction. Thus if $n \equiv 1 \pmod{4}$, we have $S(C_n) \notin \Omega_a$.

Case 2: $n \equiv 2 \pmod{4}$

In this case n = 4k + 2 for some $k \in \mathbb{N}$. Then $V(S(C_n)) = \{u_i, u'_i : 1 \leq i \leq 4k + 2\}.$ If possible let $S(C_n) \in \Omega_a$ with a labeling f. Then $N_f^+(u'_2) = a$ implies that $f(u_1) + f(u_3) = a$, which implies that either $f(u_1) = b$ or $f(u_1) = c$. Without loss of generality assume that $f(u_1) = b$. Then $f(u_3) = c$, $f(u_5) = b$, $f(u_7) = c$, $f(u_9) = b$, $f(u_{11}) = c$, $f(u_{13}) = b$. Proceeding like this, we get $f(u_{4k+1}) = b$. Now $N_f^+(u'_{4k+2}) = f(u_1) + f(u_{4k+1}) = b + b = 0$, a contradiction. Thus if $n \equiv 2 \pmod{4}$, we have $S(C_n) \notin \Omega_a$.

Case 3: $n \equiv 3 \pmod{4}$

In this case n = 4k + 3 for some $k \in \mathbb{N}$. Then $V(S(C_n)) = \{u_i, u'_i : 1 \leq i \leq 4k + 3\}.$ If possible let $S(C_n) \in \Omega_a$ with a labeling f. Then $N_f^+(u_2') = a$ implies that $f(u_1) +$ $f(u_3) = a$, which implies that either $f(u_1) = b$ or $f(u_1) = c$. Without loss of generality assume that $f(u_1) = b$. Then $f(u_3) = c$, $f(u_5) = c$ $b, f(u_7) = c, f(u_9) = b, f(u_{11}) = c, f(u_{13}) = b.$ Proceeding like this, we get $f(u_{4k+3}) = c$. Now $N_{f}^{+}(u_{1}') = a$ implies that $f(u_{2}) = b, f(u_{4}) =$ $c, f(u_6) = b, f(u_8) = c, f(u_{10}) = b, f(u_{12}) = c.$ Proceeding like this, we get $f(u_{4k+2}) = b$. Therefore $N_f^+(u'_{4k+3}) = f(u_1) + f(u_{4k+2}) = b + b$ b = 0, a contradiction. Thus if $n \equiv 3 \pmod{4}$, we also have $S(C_n) \notin \Omega_a$. Hence if $n \not\equiv 0 \pmod{4}$, $S(C_n) \notin \Omega_a$. Conversely if $n \equiv 0 \pmod{4}$,

Define $f: V(S(C_n)) \to V_4 \setminus \{0\}$ as:

$$f(u_i) = \begin{cases} b & \text{if } i \equiv 1, 2 \pmod{4} \\ c & \text{if } i \equiv 0, 3 \pmod{4} \end{cases}$$
$$f(u'_i) = a & \text{for } 1 \le i \le n.$$

Then, f is a a – neighbourhood V_4 – magic labeling for $S(C_n)$. This completes the proof of the theorem.

Theorem 2.2. $S(C_n) \in \Omega_0$ for all $n \ge 3$.

Proof. The degree of each vertex in $S(C_n)$ is either 2 or 4. By labeling all the vertices by a, we get $N_f^+(u) = 0$ for all $u \in V(S(C_n))$.

Corollary 2.3. $S(C_n) \in \Omega_{a,0}$ if and only if $n \equiv 0 \pmod{4}$.

Proof. Proof is obviously follows from theorem 2.1 and theorem 2.2. \Box

Theorem 2.4. The graph $S(P_n) \notin \Omega_0$ for all $n \geq 2$.

International Journal of Research in Advent Technology, Vol.7, No.1, January 2019 E-ISSN: 2321-9637

Available online at www.ijrat.org

Proof. Proof is obvious due to the presence of *Proof.* Consider $K_{1,n}$ with vertex set V = pendant vertices in $S(P_n)$. $\Box \{u, u_i : 1 \leq i \leq n\}$ and let $V' = \{u', u'_i :$

Theorem 2.5. $S(P_n) \notin \Omega_a$ for $n \ge 2$.

Proof. Consider the splitting graph $S(P_n)$, let $u_1, u_2, u_3, \ldots, u_n$ be the vertices of P_n and let $u'_1, u'_2, u'_3, \ldots, u'_n$ be the new vertices in $S(P_n)$. Suppose that $S(P_n) \in \Omega_a$ for some $n \geq 2$ with a labeling f. Then $N_f^+(u'_1) = a$ implies that $f(u_2) = a$. Also $N_f^+(u'_1) = a$ gives $f(u_2) + f(u'_2) = a$, which implies that $f(u'_2) = 0$, a contradiction. This completes the proof of the theorem. \Box

Corollary 2.6. $S(P_n) \notin \Omega_{a,0}$ for $n \ge 2$.

Proof. Proof directly follows from theorems 2.4 and 2.5. $\hfill \Box$

Theorem 2.7. $S(B_{m,n}) \notin \Omega_a$ for all m > 1and n > 1.

Proof. Consider the bistar $B_{m,n}$ with vertex set $V = \{u, v, u_i, v_j : 1 \leq i \leq m \text{ and } 1 \leq j \leq n\}$ where $u_i(1 \leq i \leq m)$ and $v_j(1 \leq j \leq n)$ are pendant vertices adjacent to u and v respectively. Let $V' = \{u', v', u'_i, v'_j : 1 \leq i \leq m \text{ and } 1 \leq j \leq n\}$ be the corresponding set of new vertices in $S(B_{m,n})$. Then $V(S(B_{m,n})) =$ $V \cup V'$. Suppose that $S(B_{m,n}) \in \Omega_a$ for some m > 1 and n > 1 with a labeling f. Then $N_f^+(v_1) = a$ gives f(v) + f(v') = a, which implies that f(v') = 0, a contradiction. This completes the proof of the theorem. \Box

Theorem 2.8. $S(B_{m,n}) \notin \Omega_0$ for all m > 1and n > 1.

Proof. Proof is obvious, since $S(B_{m,n})$ has pendant vertices.

Corollary 2.9. $S(B_{m,n}) \notin \Omega_{a,0}$ for all m > 1and n > 1.

Proof. Proof directly follows from theorems 2.7 and 2.8. $\hfill \Box$

Theorem 2.10. $S(K_{1,n}) \notin \Omega_a$ for all $n \in \mathbb{N}$.

Proof. Consider $K_{1,n}$ with vertex set $V = \{u, u_i : 1 \leq i \leq n\}$ and let $V' = \{u', u'_i : 1 \leq i \leq n\}$ be the corresponding set of new vertices in $S(K_{1,n})$. Assume that $S(K_{1,n}) \in \Omega_a$ for some $n \in \mathbb{N}$ with a labeling f. Now $N_f^+(u'_1) = a$ gives f(u) = a. Also $N_f^+(u_1) = a$ implies that f(u) + f(u') = a, which implies that f(u') = 0, a contradiction. Hence the proof. \Box

Theorem 2.11. $S(K_{1,n}) \notin \Omega_0$ for all $n \in \mathbb{N}$.

Proof. Proof is obvious due to the presence of pendant vertices in $S(K_{1,n})$.

Corollary 2.12. $S(K_{1,n}) \notin \Omega_{a,0}$ for all $n \in \mathbb{N}$.

Proof. Proof directly follows from theorems 2.10 and 2.11. $\hfill \Box$

Theorem 2.13. $S(K_{m,n}) \in \Omega_a$ for all m > 1and n > 1.

Proof. Consider $K_{m,n}$ with m > 1 and n > 1. Let $X = \{u_1, u_2, u_3, \ldots, u_m\}$ and $Y = \{v_1, v_2, v_3, \ldots, v_n\}$ be the bipartition of $K_{m,n}$. Also let $X' = \{u'_1, u'_2, u'_3, \ldots, u'_m\}$ and $Y' = \{v'_1, v'_2, v'_3, \ldots, v'_n\}$ be the corresponding sets of new vertices in $S(K_{m,n})$. Then $V(S(K_{m,n})) = X \cup Y \cup X' \cup Y'$. We consider the following cases:

Case 1: Both m and n are even.

Define $f: V(S(K_{m,n})) \to V_4 \setminus \{0\}$ as:

$$f(u_i) = \begin{cases} b & \text{if} \quad i = 1\\ c & \text{if} \quad i = 2\\ a & \text{if} \quad i > 2 \end{cases}$$
$$f(v_j) = \begin{cases} b & \text{if} \quad j = 1\\ c & \text{if} \quad j = 2\\ a & \text{if} \quad j > 2 \end{cases}$$
$$f(u'_i) = a & \text{for} \ 1 \le i \le m\\ f(v'_j) = a & \text{for} \ 1 \le j \le n \end{cases}$$

International Journal of Research in Advent Technology, Vol.7, No.1, January 2019 E-ISSN: 2321-9637 Available online at www.ijrat.org

Case 2: m is even and n is odd.

 $f(u_i) = \begin{cases} b & \text{if } i = 1\\ c & \text{if } i = 2\\ a & \text{if } i > 2 \end{cases}$ $f(v'_j) = \begin{cases} b & \text{if} \quad j = 1\\ c & \text{if} \quad j = 2\\ a & \text{if} \quad j > 2 \end{cases}$ $f(u'_i) = a$ for $1 \le i \le m$ $f(v_i) = a$ for $1 \le j \le n$

Case 3: m is odd and n is even.

$$f(u'_i) = \begin{cases} b & \text{if } i = 1\\ c & \text{if } i = 2\\ a & \text{if } i > 2 \end{cases}$$
$$f(v_j) = \begin{cases} b & \text{if } j = 1\\ c & \text{if } j = 2\\ a & \text{if } j > 2 \end{cases}$$
$$f(u_i) = a & \text{for } 1 \le i \le m$$
$$f(v'_j) = a & \text{for } 1 \le j \le n \end{cases}$$

Case 4: Both m and n are odd.

$$f(u'_i) = \begin{cases} b & \text{if } i = 1\\ c & \text{if } i = 2\\ a & \text{if } i > 2 \end{cases}$$
$$f(v'_j) = \begin{cases} b & \text{if } j = 1\\ c & \text{if } j = 2\\ a & \text{if } j > 2 \end{cases}$$
$$f(u_i) = a & \text{for } 1 \le i \le m$$
$$f(v_j) = a & \text{for } 1 \le j \le n \end{cases}$$

In each of the above cases, f is a a-**Case 4:** Both m and n are odd. neighbourhood V_4 -magic labeng of $S(K_{m,n})$. This completes the proof of the theorem.

Theorem 2.14. $S(K_{m,n}) \in \Omega_0$ for all m > 1and n > 1.

Proof. Consider $K_{m,n}$ with m > 1 and n > 11. Let $X = \{u_1, u_2, u_3, \dots, u_m\}$ and Y = $\{v_1, v_2, v_3, \ldots, v_n\}$ be the bipartition of $K_{m,n}$. Also let $X' = \{u'_1, u'_2, u'_3, \dots, u'_m\}$ and Y' = $\{v_1', v_2', v_3', \dots, v_n'\}$ be the corresponding sets of new vertices in $S(K_{m,n})$. Then $V(S(K_{m,n})) =$ $X \cup Y \cup X' \cup Y'$. We consider the following cases:

Case 1: Both m and n are even.

Define
$$f: V(S(K_{m,n})) \to V_4 \setminus \{0\}$$
 as:

 $f(u_i) = f(u'_i) = a$ if $i = 1, 2, 3, \dots, m$ $f(v_j) = f(v'_j) = a$ if $j = 1, 2, 3, \dots, n$

Case 2: m is even and n is odd.

$$f(v_j) = \begin{cases} b & \text{if } j = 1\\ c & \text{if } j = 2\\ a & \text{if } j > 2 \end{cases}$$
$$f(v'_j) = \begin{cases} b & \text{if } j = 1\\ c & \text{if } j = 2\\ a & \text{if } j > 2 \end{cases}$$
$$f(u_i) = a & \text{for } 1 \le i \le m$$
$$f(u'_j) = a & \text{for } 1 \le i \le m$$

Case 3: m is odd and n is even.

$$f(u_i) = \begin{cases} b & \text{if } i = 1\\ c & \text{if } i = 2\\ a & \text{if } i > 2 \end{cases}$$
$$f(u'_i) = \begin{cases} b & \text{if } i = 1\\ c & \text{if } i = 2\\ a & \text{if } i > 2 \end{cases}$$
$$f(v_j) = a & \text{for } 1 \le j \le n$$
$$f(v'_j) = a & \text{for } 1 \le j \le n \end{cases}$$

$$f(u_i) = \begin{cases} b & \text{if} \quad i = 1\\ c & \text{if} \quad i = 2\\ a & \text{if} \quad i > 2 \end{cases}$$

International Journal of Research in Advent Technology, Vol.7, No.1, January 2019 E-ISSN: 2321-9637 Available online at www.ijrat.org

$$f(u'_i) = \begin{cases} b & \text{if} \quad i = 1 \\ c & \text{if} \quad i = 2 \\ a & \text{if} \quad i > 2 \end{cases}$$
$$f(v_j) = \begin{cases} b & \text{if} \quad j = 1 \\ c & \text{if} \quad j = 2 \\ a & \text{if} \quad j > 2 \end{cases}$$
$$f(v'_j) = \begin{cases} b & \text{if} \quad j = 1 \\ c & \text{if} \quad j = 2 \\ a & \text{if} \quad j > 2 \end{cases}$$

In each of the above cases, f is a 0-neighbourhood V_4 -magic labeng of $S(K_{m,n})$. This completes the proof of the theorem.

Corollary 2.15. $S(K_{m,n}) \in \Omega_{a,0}$ for all m > 1 and n > 1.

Proof. Proof directly follows from theorems 2.13 and 2.14. $\hfill \Box$

Theorem 2.16. $S(F_m) \in \Omega_0$ for all $m \in \mathbb{N}$.

Proof. If we label all the vertices of $S(F_m)$ by a, we get $S(F_m) \in \Omega_0$. \Box

Theorem 2.17. $S(F_m) \notin \Omega_a$ for all $m \in \mathbb{N}$.

Proof. Consider the friendship graph F_m . Let the vertices of i^{th} copy of C_3 in F_m be w, u_i and v_i where w is the common vertex of the triangles and let $\{w', u'_i, v'_i : 1 \le i \le m\}$ be the corresponding set of vertices in $S(F_m)$. Assume that $S(F_m) \in \Omega_a$ for some $m \in \mathbb{N}$ with a labeling f. Since $N_f^+(u'_1) = a$, either f(w) = bor f(w) = c. Without loss of generality assume that f(w) = b. If f(w) = b, $f(u_i) = f(v_i) = c$ for all $1 \le i \le m$. Therefore, $N_f^+(w') = 2mc =$ 0, a contradiction. Hence $S(F_m) \notin \Omega_a$ for all $m \in \mathbb{N}$.

Corollary 2.18. $S(F_m) \notin \Omega_{a,0}$ for all $m \in \mathbb{N}$.

Proof. Proof directly follows from theorems 2.16 and 2.17. $\hfill \Box$

Theorem 2.19. $S(QS_n) \in \Omega_0$ for all $n \in \mathbb{N}$.

Proof. Label all the vertices of $S(QS_n)$ by a, we get $S(QS_n) \in \Omega_0$.

Theorem 2.20. $S(QS_n) \notin \Omega_a$ for all n > 2.

Proof. Let QS_n be the quadrilateral snake obtained from the path $v_1v_2v_3...v_n$ by joining each pair v_i, v_{i+1} to the new vertices u_i, w_i respectively and then joining u_i and w_i by an edge. Now consider $S(QS_n)$. Let v'_i, u'_i, w'_i be the new vertices corresponding to v_i, u_i, w_i . Suppose $S(QS_n) \in \Omega_a$ for some n > 2with a labeling f. Then, $N_f^+(u'_1) = a$ gives $f(v_1) + f(w_1) = a$. Also $N_f^+(w'_2) = a$ implies that $f(u_2) + f(v_3) = a$, Therefore, $N_f^+(v'_2) =$ $f(v_1) + f(w_1) + f(u_2) + f(v_3) = 0$, a contradiction. Hence, $S(QS_n) \notin \Omega_a$ for all n > 2. \Box

Corollary 2.21. $S(QS_n) \notin \Omega_{a,0}$ for all n > 2.

Proof. Proof directly follows from theorems 2.19 and 2.20. $\hfill \Box$

Theorem 2.22. $S(B_n) \in \Omega_a$ if and only if n is odd.

Proof.

Consider B_n with vertex set $\{u, v, u_i, v_i : 1 \leq i \leq n\}$ and edge set $\{uv, uu_i, vv_i, u_iv_i : 1 \leq i \leq n\}$ be the set of new vertices in $S(B_n)$. Assume that $S(B_n) \in \Omega_a$ for some $n \in \mathbb{N}$ with a labeling f. Since $N_f^+(u_1') = a$, we have f(u) = bor f(u) = c. Without loss of generality we assume that f(u) = b. Then $f(v_i) = c$ for all $i = 1, 2, 3, \ldots, n$. Now $N_f^+(v') = a$ implies that $f(u) + \sum_{i=1}^n f(v_i) = b + nc = a$. Hence n is odd. Conversely assume that n is odd. Define a labeling $f: V(S(B_n)) \to V_4 \setminus \{0\}$ as:

$$f(u) = f(u_i) = b \quad \text{if} \quad i = 1, 2, 3, \dots, n$$

$$f(v) = f(v_i) = c \quad \text{if} \quad i = 1, 2, 3, \dots, n$$

$$f(u') = fu'_i) = a \quad \text{if} \quad i = 1, 2, 3, \dots, n$$

$$f(v) = f(v'_i) = a \quad \text{if} \quad i = 1, 2, 3, \dots, n$$

Then, f is a a-neighbourhood V_4 -magic labeling of $S(B_n)$. This completes the proof. \Box

Theorem 2.23. $S(B_n) \in \Omega_0$ if and only if n is odd.

Proof. Consider the book graph B_n with vertex set $\{u, v, u_i, v_i : 1 \leq i \leq n\}$ and edge set $\{uv, uu_i, vv_i, u_iv_i : 1 \leq i \leq n\}$. Let $\{u', v', u'_i, v'_i : 1 \leq i \leq n\}$ be the set of new vertices in $S(B_n)$. Assume that $S(B_n) \in \Omega_0$ for some $n \in \mathbb{N}$ with a labeling f. Since $N_{f}^{+}(u_{1}') = 0$, we should have $f(u) = f(v_{1}) = a$ or $f(u) = f(v_1) = b$ or $f(u) = f(v_1) =$ c. Without loss of generality we assume that $f(u) = f(v_1) = a$. Then $f(v_i) = a$ for all i = 1, 2, 3, ..., n. Now $N_f^+(v') = 0$ implies that $f(u) + \sum_{i=1}^{n} f(v_i) = a + na = 0$. Hence *n* is odd. Conversely assume that n is odd. We define $f: V(S(B_n)) \to V_4 \setminus \{0\}$ as: f(w) = a for all $w \in V(S(B_n))$. Then, f is a 0-neighbourhood V_4 -magic labeling of $S(B_n)$.

Corollary 2.24. $S(B_n) \in \Omega_{a,0}$ if and only if n is odd.

Proof. Proof directly follows from theorems 2.22 and 2.23. $\hfill \Box$

This research paper investigates neighbourhood V_4 -magic labeling of splitting graphs of special graphs like $C_n, P_n, B_{m,n}, K_{1,n}, K_{m,n},$ F_m, QS_n and B_n respectively. The splitting graph we considered was 2-level splits. The m-level splitting graphs (m > 2) yet to be considered. Scope of this research is the investigation of neighbourhood V_4 -magic labeling of m-level splitting graphs for m > 2.

References

- [1] Chartrand.G,Zhang.P, Introduction to Graph Theory, McGraw-Hill, 2005.
- [2] Joseph A.Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics, Twenty-first edition, December 21, 2018.

- [3] Lee SM, Saba F, Salehi E, Sun H. On the V_4- magic graphs, Congressus Numerantium,2002.
- [4] N. B. Rathod and K. K. Kanani, V_4 -Cordial Labeling of Quadrilateral Snakes, International Journal of emerging Technologies and applications in Engineering, Technology and Sciences, Jan 2016.
- [5] P.T Vandana, V anil Kumar: V_4 -Magic Labelings of Wheel related graphs, British journal of Mathematics and Computer science, 8(3), 189-219, (2015).
- [6] R. Balakrishnan and K. Ranganathan, A Textbook of Graph theory, Springer, 2012.
- [7] R.Sweetly and J.Paulraj Joseph, Some special V₄-magic graphs, journal of informatics and Mathematical sciences, 2, 141-148, (2010).